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Abstract. The shell correction is a term ∝ 〈v2
e 〉 in the electronic-stopping force on a charged particle, where

ve denotes the speed of a target electron. This term has been evaluated as a function of impact parameter
within the scheme underlying Bohr’s classical stopping theory, applying free-Coulomb scattering to close
and a multipole expansion to distant interactions. Unlike the leading term in the stopping force, the shell
correction is dominated by contributions from close collisions, and its magnitude differs from that found
from the Bethe theory. Findings are also compared with the predictions of kinetic theory. Implications are
mentioned on the stopping of swift heavy ions.

PACS. 34.50.Bw Energy loss and stopping power – 61.85.+p Channeling phenomena
(blocking, energy loss, etc.) – 52.40.Mj Particle beam interactions in plasma

1 Introduction

Shell corrections account for the effect of the internal mo-
tion of target electrons on the electronic stopping of a
swift charged particle [1]. Their relative significance on
the stopping force is governed by the ratio 〈v2

e 〉/v2, where
v and ve are the speeds of the moving particle and a tar-
get electron, respectively. Consequently, these corrections
become significant at low projectile speed [2]. While ne-
glected in the original versions of classical and quantal
stopping theory [3,4], shell corrections are an essential in-
gredient in quantitative estimates, in particular for inner
shells. Theoretical treatments are based on the Born ap-
proximation applied to model targets such as hydrogenic
atoms [5], Fermi gas [6], or harmonic oscillator [7]. More-
over, shell corrections have been evaluated by adopting
transformation laws from binary-collision kinematics [8].

Bohr’s classical theory serves as a useful reference stan-
dard in particle stopping because of transparency, calcula-
tional ease and physical insight provided. For example, the
Z3

1 or Barkas effect was first treated within this scheme [9],
well ahead of elaborate quantal calculations. Somewhat
surprisingly, an estimate of shell corrections within this
scheme does not seem available. With an increasing use of
Bohr’s concepts in heavy-ion stopping [10–13] there has
arisen a need also for shell corrections. The present paper
is intended to provide a theoretical basis for such esti-
mates.

2 Fundamentals

With the stopping force in standard notation,

−dE
dx

=
4πZ2

1e
4

mv2
NZ2L, (1)

whereN is the number density of the target and Z1 and Z2

are atomic numbers of projectile and target, respectively,
the pertinent physics is contained in the stopping number
L. The prediction for L of the Bohr theory reads1

L = log
Cmv3

Z1e2ω
+∆L, C = 1.1229, (2)

where ω is the resonance frequency of a target electron
modelled as a classical oscillator2. In principle, ∆L stands
for a multitude of corrections [12], but only shell correc-
tions will be considered here.

Theoretical treatments based on quantal perturbation
theory [1,6,7] all yield

∆L = −〈v
2
e 〉
v2

+O
(
〈v4

e 〉
v4

)
. (3)

It is by no means evident that equation (3) should be
valid also within the classical scheme: after all, the zero-
order term in equation (2) differs from the Bethe loga-
rithm log(2mv2/~ω), and so do the force fields governing
target motion.

Bohr’s stopping theory separates projectile-target in-
teractions into distant and close collisions according to
the impact parameter p. The boundary between the two
regimes is chosen such as to minimize its influence on the
resulting stopping force. Distant interactions are treated
as in classical dispersion theory, as the effect on a tar-
get electron of the time-dependent electric field set up

1 For a discussion of the behavior of equation (2) near and
below the zero of the logarithm the reader is referred to refer-
ence [10].

2 With the aim of a transparent notation, only a single
resonance is considered. Extension to multiple resonances is
straightforward.
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by the penetrating particle, that field being assumed
slowly-varying in space. This picture breaks down for
close interactions which instead are treated as binary free-
Coulomb interactions, neglecting electron binding.

The present treatment follows Bohr’s scheme except
for the inclusion of the initial motion of target electrons
up to second order. Within the Born approximation, shell
corrections to that order appear model-independent, cf.
equation (3). While the restriction to quadratic terms
sets a limit on the numerical accuracy toward low pro-
jectile speeds, useful insight is provided not the least on
the impact-parameter dependence which turns out to dif-
fer substantially from that of the leading contribution to
the energy loss.

3 Distant collisions

3.1 Basic equations

Bohr’s theory describes electron binding by a harmonic
force. Hence, the initial motion of a target electron is
given by

r0(t) = a0 cosωt+ b0 sinωt, (4)

where a0 and b0 are 3-dimensional vectors, distributed at
random in accordance with

〈a0〉 = 〈b0〉 = 〈a0 · b0〉 = 0;
〈
a2

0

〉
=
〈
b2

0

〉
=
〈v2

e 〉
ω2
· (5)

With the interaction force

F(t) =
∫

d3kV (k)(−ik)eik[r(t)−R(t)] (6)

due to a uniformly-moving projectile,

R(t) = p + vt; p ⊥ v (7)

the electron trajectory is given by

r(t) = r0(t) +
1
mω

∫ t

−∞
dt′ sinω(t− t′)F(t′). (8)

At large t, equations (4, 6, 8) lead to

r(t) = (a0 − S) cosωt+ (b0 + C) sinωt (9)

with

C =
1
mω

∫ ∞
−∞

dt cosωtF(t);

S =
1
mω

∫ ∞
−∞

dt sinωtF(t). (10)

The energy transfer Q for a given set a0,b0 is then found
from the relation

Q =
1
2
m(ṙ2 − ṙ0

2) +
1
2
mω2(r2 − r0

2)

=
1
2
mω2

(
C2 + S2 + 2b0 ·C− 2a0 · S

)
, (11)

which is exact within the assumption of uniform projectile
motion.

3.2 Series expansion

In conventional Bohr theory the term r(t) in the exponen-
tial in equation (6) is ignored because it leads to terms of
higher than second order in Z1. In the presence of r0 in (8)
an expansion

eik·r(t) = 1 + ik · r(t) − 1
2

[k · r(t)]2 . . . (12)

needs to be made, much like in the theory of the Barkas ef-
fect [9], of C and S up to second order in the perturbance
Z1 and in the initial motion r0(t). Insertion into equa-
tion (11), dropping higher-order terms and consideration
of equation (5) leads to

〈
C2 + S2

〉
= − 1

m2ω2

∫ ∞
−∞

dt
∫ ∞
−∞

dt′ cosω(t− t′)

×
∫

d3k
∫

d3k′ V (k)V (k′)(k · k′)e−ik·R(t)−ik′·R(t′)

×
{

1− 1
6
〈
a2

0

〉 [
k2 + k′

2 + 2k · k′ cosω(t− t′)
]}

, (13)

where the term independent of 〈a2
0〉 in equation (13) rep-

resents Bohr’s result.
Expansion of the remainder of equation (11) needs

terms in C and S of first order in a0 or b0 and up to
second order in V (k). Therefore, all three terms listed in
the expansion (12) are in fact needed. However, systematic
use of equation (5) and mutual cancellation of equivalent
terms between b0 ·C and a0 ·S leave only one nonvanishing
term,〈

2b0 ·C− 2a0 · S
〉

= −
〈
a2

0

〉
3m2ω2

∫ ∞
−∞

dt
∫ ∞
−∞

dt′

× sin2 ω(t− t′)
∫

d3k
∫

d3k′ V (k)V (k′)

× (k · k′)2e−ik·R(t)−ik′·R(t′). (14)

3.3 Integration

Collection of equations (13, 14) in equation (11), leaving
out the zero-order term, leads to the shell correction

∆T = 〈∆Q〉 =

〈
a2

0

〉
6m

∫ ∞
−∞

dt
∫ ∞
−∞

dt′
∫

d3k
∫

d3k′

× V (k)V (k′)e−ik·R(t)−ik′·R(t′)(k · k′)2 cos 2ω(t− t′).
(15)

After insertion of equation (7) and integration over
the time variables, k-dependent factors in the inte-
grand may be replaced by differentiations with respect
to p. For Coulomb interaction3, V (k) = −Z1e

2/2π2k2,
3 Only point charges will be considered here. The effect of

screening can be incorporated when necessary [11].
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the integrations over k and k′ can be carried out, lead-
ing to

∆T =
2Z2

1e
4
〈
a2

0

〉
3mv2

[
∇p ·∇p′ +

(
2ω
v

)2
]2

×K0

(
2
ωp

v

)
K0

(
2
ωp′

v

)∣∣∣∣
p′=p

(16)

or

∆T =
8Z2

1e
4
〈
v2

e

〉
3mv4

(
2ω
v

)2{3
2

[
K0

(
2
ωp

v

)]2
+2
[
K1

(
2
ωp

v

)]2
+

1
2

[
K2

(
2
ωp

v

)]2}
, (17)

where Kn is a modified Bessel function in standard nota-
tion. In comparison with Bohr’s expression for the leading
term,

T =
2Z2

1e
4

mv2

(ω
v

)2
{[
K0

(ωp
v

)]2
+
[
K1

(ωp
v

)]2}
, (18)

two differences appear most significant,

– the dependence on 2ωp/v instead of ωp/v causes a
more rapid decrease at large impact parameters,

– the occurrence of the Bessel function K2(2ωp/v) in
addition to K0 and K1 causes a more pronounced di-
vergence at small impact parameters.

4 Close collisions

Close collisions are treated by classical binary scattering
theory, taking into account the initial velocity ve of the
target electron. The kinematics are well-known [8,14], but
inclusion of the impact-parameter dependence is a notice-
able complication that requires care.

For a target particle in motion, in the absence of a
binding force, the definition of the impact parameter is not
unique. In order to ensure compatibility with the distant-
collision regime, the initial (uniform) motion of the elec-
tron will be characterized by

r0(t) = a0 + vet, (19)

with

〈a0〉 = 〈ve〉 = 〈a0 · ve〉 = 0; 〈a2
0〉 =

〈v2
e 〉
ω2

, (20)

the projectile trajectory (7) remaining unaffected. Equa-
tion (19) represents a feasible match of a uniform to a
periodic trajectory: both the average behavior and that
around t = 0 agree with equation (4)4.

For a heavy projectile the c.m.s. velocity is identical in
practice with the projectile velocity. In a system moving

4 The resonance frequency ω occurs in equation (20) only to
ensure proper specification of the displacement a0.

Fig. 1. Projectile interaction with moving target electron in
lab (left) and projectile frame (right).

along with the projectile the unperturbed electron trajec-
tory reads

re(t) = s + wt; s = a0 − p; w = ve − v. (21)

Figure 1 defines the vectorial impact parameter p′ to the
electron,

p′ = s− s ·w
w2

w. (22)

With a scattering angle θ = θ(w, p′), the velocity after a
collision reads

w′ = w cos θ +
p′

p′
w sin θ. (23)

This defines the energy transfer Q in the laboratory sys-
tem

Q =
m

2
[
(v + w′)2 − v2

e )
]

= m(v2 − v · ve)(1− cos θ) +mwve ·
p′

p′
sin θ. (24)

The energy transfer per unit time at the impact-parameter
interval d2p′ is given by NwQ d2p′. Projection of that
area on d2p in the lab system provides a factor |v ·w|/vw.
With this one arrives at the stopping cross-section

S =
∫

d2pT (p) (25)

with

T (p) =
〈v ·w

v2
Q
〉
. (26)

The same result can be obtained by considering the mo-
mentum transfer per unit time to the projectile in the
moving system5.

5 The momentum transfer in a collision is

∆P = mw(1− cos θ)−mwp′

p′
sin θ.

Only the component −(v/v) · ∆P in the direction −v is of
interest for the stopping force. With the current density Nw,
the number of electrons per unit time passing an areal element
d2p is given by

−Nw · v
v

d2p.

The product of the two quantities yields the contribution from
the areal element d2p to the stopping force N

R
d2pT (p), from

which T (p), equation (26), emerges again.
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Specifically, for free-Coulomb scattering6 with
tan θ/2 = b′/2p′ and b′ = −2Z1e

2/mw2,

T (p) = T (1)(p) + T (2)(p) (27)

with

T (1)(p) = 2mv2

〈
(1− v · ve/v

2)2

1 + (2p′/b′)2

〉
(28)

and

T (2)(p) = 2mv2

〈
2w(ve · p′)

v2b′
1− v · ve/v

2

1 + (2p′/b′)2

〉
. (29)

Series expansion in a0 and ve, taking due account of equa-
tion (20), leads to

T (1)(p) =
2mv2

1 + (2p/b)2

{
1 +
〈v2

e 〉
3v2

1− 15(2p/b)2

[1 + (2p/b)2]2

−8〈a2
0〉

3b2
1− (2p/b)2

[1 + (2p/b)2]2

}
(30)

and

T (2)(p) = 0 (31)

up to second order, with b = −2Z1e
2/mv2 and

8〈a2
0〉

3b2
=

2
3
〈v2

e 〉
v2

ξ2; ξ = mv3/Z1e
2ω. (32)

5 Results

Figures 2 and 3 show shell corrections evaluated from
equations (17, 30) as functions of the scaled impact pa-
rameter ωp/v for several values of the scaled velocity pa-
rameter ξ = mv3/Z1e

2ω. Plotted is the quantity p∆T (p)
in proper dimensionless variables. This implies that the
area under a curve reflects the contribution to the total
shell correction.

Consider first the cases of ξ = 8 and 4 indicating the
high-speed behavior (Fig. 2). The shell correction is nega-
tive at small impact parameters, turns positive after hav-
ing gone through a minimum and slowly approaches zero.
This appears dictated mostly by the free-Coulomb behav-
ior. A smooth transition to the multipole limit is found,
which is positive everywhere, and there is a crossover at
an impact parameter pc (Tab. 1).

A qualitatively similar behavior is still observed for
ξ = 2 (Fig. 3), although there is no crossover since the
free-Coulomb limit now is negative everywhere. While the
true behavior of the shell correction is not obvious for 1 .
ωp/v . 2, the contribution to the total shell correction
from this region is moderate.

6 The chosen notation implies negative scattering angles for
attractive interaction.

Fig. 2. Impact-parameter-dependent shell corrections in Bohr
model; plotted is the quantity (∆T/2m〈v2

e 〉)(ωp/v) for ξ =
mv3/Z1e

2ω = 8 (upper graph) and 4 (lower graph).

This behavior gets accentuated for ξ = 1 (Fig. 3) where
a feasible interpolation between the two curves can hardly
be found without additional information. Clearly, the lim-
itations of a description based solely on the first shell cor-
rection have been reached here.

Table 1 shows integrated shell corrections. It is seen
that the free-Coulomb portion dominates, and that the
total shell correction is close to what would be found from
integration over the free-Coulomb expression over all im-
pact parameters,

∆Lfree = −7
6
〈v2

e 〉
v2
· (33)

Note that the term ∝ 〈a2
0〉 does not contribute to equa-

tion (33). This has to be so since a0 merely specifies an
origin in the impact plane before integration.
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Fig. 3. Same as Figure 2 for ξ = mv3/Z1e
2ω = 2 (upper

graph) and 1 (lower graph).

The result, equation (33) is close to but not identical
with the quantal result (3), and the results in Table 1 de-
viate even a bit more. In order to rationalize the difference
in magnitude note that the minima in Figures 2 and 3 lie
around or below ωpmin/v = 1/ξ or, in terms of Bohr’s
κ-parameter κ = 2Z1v0/v [15]

pmin .
κ

2
~
mv
· (34)

In the Bethe regime, i.e., for κ . 1, this minimum lies
below the de Broglie wavelength where the relation be-
tween energy loss and impact parameter is not described
by classical dynamics.

6 Kinetic theory

In reference [8] a general expression was suggested for the
first shell correction, based on transformation laws from

Table 1. Contributions to coefficient of first shell correction.
pc marks the crossover between free-Coulomb and multipole
limit. Coulomb: contribution from impact parameters < pc.
Bohr: contributions from impact parameters > pc.

ξ ωpc/v v2∆L/〈v2
e 〉

Coulomb Bohr total

10 0.866 −1.563 0.201 −1.362

8 0.917 −1.502 0.160 −1.342

6 1.018 −1.407 0.103 −1.304

4 1.283 −1.265 0.033 −1.232

3 1.846 −1.181 0.003 −1.178

binary-collision kinematics,

∆S(v) =
〈v2

e 〉
v2

(
−1

3
S0(v) +

v

3
S0
′(v) +

v2

6
S0
′′(v)

)
, (35)

where S0(v) represents the stopping cross-section disre-
garding shell corrections, i.e., the limiting expression for
v � ve, and a prime denotes the derivative with respect
to v.

When (35) is applied to equation (2) one finds

∆L = −3〈v2
e 〉

2v2
, (36)

i.e., a result different from both (3, 33) and Table 1. It is
of interest to trace the origin of this discrepancy.

Note first that equation (2) (with C = 1) can be ratio-
nalized by assuming free-Coulomb scattering on station-
ary target electrons for 0 < p < pmax = v/ω and cutting
off all interaction at larger impact parameters. The kinetic
theory requires this limit to be applied in the moving sys-
tem, i.e., 0 ≤ p′ ≤ w/ω or

s2 − (s ·w)2

w2
≤ w2/ω2 (37)

according to equation (22). This affects the averaging pro-
cess leading from equation (28–30). Equation (28) needs to
be evaluated again, now with the boundary condition (37)
also expanded up to second order in ve. One can set
a0 = 0 here since that term drops out after integration,
as in equation (31). As a result one finds a contribution
∆L(0) = 〈v2

e 〉/3v2 from the zero-order term in (28) and
∆L(1) = −2〈v2

e 〉/3v2 from the first-order term. Adding
these contributions to equation (33) yields the result from
kinetic theory, equation (36), as it has to for consistency.

This estimate shows that the kinetic theory overes-
timates the contribution from distant collisions to the
shell correction. The likely reason for this is the fact that
shell corrections are evaluated in that scheme by means
of a transformation of the leading energy-loss term, where
there is approximate equipartition between close and dis-
tant collisions.

Since the transformations discussed in reference [8]
refer to integrals over the impact parameter, pertinent
differential relationships are given here for completeness,
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although only for the case of a projectile mass � m.
If the energy loss to a stationary target electron is de-
noted as T0(p, v), then, for binary collisions and a central
force,

T (p, v) =
〈
T0(p′, w)

(v ·w
vw

)2
〉
. (38)

Expansion up to second order yields

T (p, v) ' T0(p, v)

+
〈v2

e 〉
v2

(
−2

3
− 1

6
p
∂

∂p
+

1
3
v
∂

∂v
+

1
6
v2 ∂

2

∂v2

)
T0(p, v)

+
〈a2

0〉
p2

(
1
6
p
∂

∂p
+

1
6
p2 ∂

2

∂p2

)
T0(p, v). (39)

Integration over 2πp dp leads back to equation (35).

7 Discussion

Figures 2 and 3 confirm the experience from Bethe theory
that the shell correction results from the motion of a target
electron, while the influence of the binding force is indirect
via its effect on the zero-point motion.

The absence of some sort of equipartition in the shell
correction between close and distant interactions has been
established in momentum space within the Bethe the-
ory [1]. However, equipartition was asserted in reference [1]
between energy transfers below and above mv2. In the
present scheme, this corresponds to 2p/|b| = 1 or ωp/v =
1/ξ. At least for ξ = 8 and 4, impact parameters below
that limit, i.e., energy losses above mv2, contribute with
a significantly higher weight than those below mv2.

While it is reassuring that a smooth transition between
the two theoretical schemes is achieved for not too small
values of ξ, the error made by applying free-Coulomb scat-
tering at all impact parameters is limited, as shown in Ta-
ble 1, and even for ξ = 2 and 1, where there is some uncer-
tainty about the proper interpolation, application of the
binary approximation at all impact parameters appears
the most feasible approach in the lack of more detailed
information.

Note that the limitations of the kinetic theory identi-
fied in the preceding section become relevant only when
long-range interactions play a substantial role in the en-
ergy loss before shell correction, while the transformation
equations as such are exact within the binary-collision pic-
ture. For heavy ions, shell corrections become important
mainly in the velocity range where ions are more or less
heavily screened [12]. With increasing screening the role
of the long-range part of the interaction decreases even in
zero order.

While the applicability of the binary-collision picture
implies a major simplifaction in the computation of stop-
ping forces for heavy ions, it is clear that the restriction to
terms of second order in ve cannot be adequate at veloci-
ties where shell corrections are large. However, within the
binary-collision approximation, target motion can readily
be allowed for to any order.

This work has been supported by the Danish Natural Sci-
ence Research Council (SNF). Discussions with George Basbas,
Andreas Schinner, and Allan Sørensen are gratefully acknowl-
edged.
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